Getting Started with Data Science

I get quite a few e-mail messages from very smart people who are looking to get started in data science. Here’s what I usually tell them:

The best way to get started in data science is to DO data science!

First, data scientists do three fundamentally different things: math, code (and engineer systems), and communicate. Figure out which one of these you’re weakest at, and do a project that enhances your capabilities. Then figure out which one of these you’re best at, and pick a project which shows off your abilities.

Second, get to know other data scientists! If you’re in New York, try the DataGotham events list to find some meetups, and make sure to stay for the beers. Look for groups, like DataKind, that need data skills put to work for good. No matter how much of a beginner you might be, your enthusiasm will be appreciated, you’ll learn things, and you’ll meet great people. And if you can’t find a physical meetup close to you, start one, or join the twitter discussion.

Third, put your projects out in public. Share them on Github, your blog, and Twitter. Explain why you thought the question was interesting, where you got the data (and good data is everywhere), and how you came to a conclusion. It doesn’t have to be perfect. A couple examples of data projects motivated by nothing more than the author’s curiosity are  Yvo’s TechCrunch analysis and Drew and John’s Ranking the Popularity of Programming Languages.

Finally, you can start right here. What advice do you give? What great projects have you seen lately? Share them in the comments.

New York Times: Reinventing E-mail, One Message at a Time

Nick Bilton did a writeup of my homegrown e-mail scripts in the New York Times!